active audition and sensorimotor integration for sound
play

Active Audition and Sensorimotor Integration for Sound Source - PowerPoint PPT Presentation

Active Audition and Sensorimotor Integration for Sound Source Localization Mathieu Bernard 25 novembre 2011 1/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration Introduction CIFRE thesis. Co-direction : Patrick


  1. Active Audition and Sensorimotor Integration for Sound Source Localization Mathieu Bernard 25 novembre 2011 1/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  2. Introduction CIFRE thesis. Co-direction : Patrick Pirim, Brain Vision Systems Bruno Gas, ISIR, UPMC Alain de Cheveign´ e, LPP, Paris Descartes Outline Artificial auditory system for sound localization, Audio-tactile model for texture recognition, Active audition and sensorimotor integration. 2/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  3. Autonomous robotics Psikharpax, the robot rat 3/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  4. Artificial auditory system Bioinspired sound localization Outer ear Inner ear Binaural localiation cues ITD - ILD Outer ear Inner ear Auditory model Implementation robotic robot simulation sound simulated capture sound sources core library real time - c++ wav files standalone programs 4/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  5. Outer ear model Pinna Auditory fovea Microphone Oriented toward the fovea Support Servomotor Outer ear = Pinna, microphone and software capture. Spectral and directional cues. 5/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  6. Inner ear model (1/2) Inner ear = cochlear model and pulse train generation. Cochlear model Gammatone filterbank Usually 30 channels from 300Hz to 8kHz at 20kHz 6/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  7. Inner ear model (2/2) Inner ear = cochlear model and pulse train generation. Pulse train generation Cochlear channel output ⇒ Pulse train Discrete representation, noise suppression. A pulse = temporal and amplitude information. 7/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  8. ILD computation (1/2) Energy for each pulse p ( t ), the energy is : u = t � p ( u ) 2 E ( t ) = (1) u = t − T 8/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  9. ILD computation (2/2) ILD = Interaural Level Difference 2 E left , i ( t ) For each channel i : ILD i ( t ) = E left , i ( t )+ E right , i ( t ) − 1 9/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  10. ITD computation (1/3) ITD = Onset extraction and delay lines. Onset extraction from a pulse train Comparison with a dynamic threashold, 2 parameters. 10/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  11. ITD computation (2/3) ITD = Onset extraction and delay lines. Delay lines model 11/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  12. ITD computation (3/3) ITD = Onset extraction and delay lines. 12/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  13. Auditory and tactile model for texture perception (1/3) Similar model for transduction and processing Audition and touch support fine texture discrimination skills. Rat vibrissae and cochlea transduction based on resonance. Strong interaction for auditory/tactile spectral processing. 13/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  14. Auditory and tactile model for texture perception (2/3) Whiskers filterbank adapted from gammatone cochlear model : Feature extraction = Instantaneous Mean Power : 14/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  15. Auditory and tactile model for texture perception (3/3) Texture classification : 8 textures, 3 layer perceptron Response to a pure tone (whisker at 630 Hz) Influence of the number of channels 15/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  16. Auditory Evoked Behaviors (1/2) Outer ear Inner ear Energy ILD Outer ear Inner ear Energy Auditory model Motor control Neck and body Motor control Neck ⇒ ILD minimization Wheels ⇒ Follow neck orientation ILD < 0 ⇒ turn right, Constant speed, ILD > 0 ⇒ turn left. Smooth rotations. Video ! Video ! 16/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  17. Auditory Evoked Behaviors (2/2) Phonotaxis trajectories. Front-back disambiguation. 17/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  18. Sensorimotor Approach (1/3) Environment state e ∈ E and motor state m ∈ M , Sensory state s ∈ S , we have s = Φ( m , e ), Φ is called a sensorimotor law. 18/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  19. Sensorimotor Approach (2/3) Quand on dit [...] que nous localisons tel objet en tel point de l’espace [...] cela signifie simplement que nous nous repr´ esentons les mouvements qu’il faut faire pour atteindre cet objet. [...] Nous nous repr´ esentons les sensations musculaires qui accompagnent [ces mouvements] et qui n’ont aucun caract` ere g´ eom´ etrique, qui par cons´ equent n’impliquent nullement la pr´ eexistance de la notion d’espace. H. Poincar´ e, L’espace et la g´ eom´ etrie, 1845. Proposed formalization for localization Find the motor state ˜ m such as m = argmin ˜ | Φ( m , e ) − Φ( m 0 , e 0 ) | . m ∈M 19/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  20. Sensorimotor Approach (3/3) Sound source localization Two ways for ˜ m estimation Orienting behavior After completion we have ˜ m = m end s end = Φ( m end , e ) = Φ( m 0 + δ m , e 0 + δ e ) , Manifold learning Sensory space S lies on a low-dim manifold R , Dimension reduction technique : S → R , Same topology as the embodying space (at least locally). 20/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  21. Manifold learning (1/3) CAMIL database, ILD vectors : 21/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  22. Manifold learning (2/3) CAMIL database, ITD vectors : d=690 → d=3 22/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  23. Manifold learning (3/3) 2 outer ears models : HRTF and directive filters Front-back disambiguation with spectral cues : 23/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  24. Sensorimotor integration (1/2) Learning algorithm Iterative learning of R , Self-supervised. 24/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  25. Sensorimotor integration (2/2) Simulation results over 400 experiments 25/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  26. Intrinsic Dimension Estimation Simulation (ILD, azimtuh 180 & 360) CAMIL dataset (ILD & ITD, azimtuh 360, elevation [-30, 30]) 26/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

  27. Perspectives SensoriMOTOR 27/27 Mathieu Bernard - ISIR - BVS Active Audition and Sensorimotor Integration

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend