a solution for the compositionality problem of dinatural
play

A Solution for the Compositionality Problem of Dinatural - PowerPoint PPT Presentation

A Solution for the Compositionality Problem of Dinatural Transformations Guy McCusker, Alessio Santamaria 12 th July 2019 Category Theory 2019 Edinburgh, 7- 13 th July 2019 Dinatural transformations F; G : C op C D . A dinatural


  1. A Solution for the Compositionality Problem of Dinatural Transformations Guy McCusker, Alessio Santamaria 12 th July 2019 Category Theory 2019 Edinburgh, 7- 13 th July 2019

  2. Dinatural transformations F; G : C op × C → D . A dinatural transformation ’ : F → G is a family of morphisms in D ’ = ( ’ A : F ( A; A ) → G ( A; A )) A ∈ C

  3. Dinatural transformations F; G : C op × C → D . A dinatural transformation ’ : F → G is a family of morphisms in D ’ = ( ’ A : F ( A; A ) → G ( A; A )) A ∈ C such that for all f : A → B in C the following commutes: ’ A F ( A; A ) G ( A; A ) F ( f ; 1) G (1 ;f ) F ( B; A ) G ( A; B ) F (1 ;f ) G ( f ; 1) F ( B; B ) G ( B; B ) ’ B

  4. . . . don’t compose ’ : F → G , : G → H dinatural ’ A A F ( A; A ) G ( A; A ) H ( A; A ) F ( f ; 1) G ( f ; 1) G (1 ;f ) H (1 ;f ) F ( B; A ) G ( B; A ) G ( A; B ) H ( A; B ) G (1 ;f ) G ( f ; 1) F (1 ;f ) H ( f ; 1) F ( B; B ) G ( B; B ) H ( B; B ) ’ B B

  5. An extraordinary transformation C cartesian closed category. eval A;B : A × ( A ⇒ B ) → B

  6. An extraordinary transformation C cartesian closed category. eval A;B : A × ( A ⇒ B ) → B eval is natural in B and for all f : A → A ′ the following commutes: 1 × ( f ⇒ 1) A × ( A ′ ⇒ B ) A × ( A ⇒ B ) f × (1 ⇒ 1) eval A;B eval A ′ ;B A ′ × ( A ′ ⇒ B ) B since for all a ∈ A and g : A ′ → B ( g ◦ f )( a ) = g ( f ( a )) .

  7. Extranatural transformations (Eilenberg, Kelly 1966) F : A × B op × B → E , G : A × C op × C → E . An extranatural transformation ’ : F → G is a family of morphisms in E ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A ∈ A ;B ∈ B ;C ∈ C

  8. Extranatural transformations (Eilenberg, Kelly 1966) F : A × B op × B → E , G : A × C op × C → E . An extranatural transformation ’ : F → G is a family of morphisms in E ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A ∈ A ;B ∈ B ;C ∈ C A A ′ , g : B → B B ′ , h : C → C C ′ such that for all f : A → ’ A;B;C F (1 ;g; 1) F ( A; B ′ ; B ) F ( A; B; B ) G ( A; C; C ) F ( A; B; B ) ’ A;B;C F ( f ; 1 ; 1) G ( f ; 1 ; 1) F (1 ; 1 ;g ) ’ A ′ ;B;C ’ A;B ′ ;C F ( A ′ ; B; B ) G ( A ′ ; C; C ) F ( A; B ′ ; B ′ ) G ( A; C; C ) ’ A;B;C F ( A; B; B ) G ( A; C; C ) ’ A;B;C ′ G (1 ; 1 ;h ) G (1 ;h; 1) G ( A; C ′ ; C ′ ) G ( A; C; C ′ )

  9. Extranaturals don’t compose already F : A × B op × B → E , G : A × C op × C → E , H : A × D op × D → E . ’ : F → G , : G → H extranatural transformations. „ « ’ A;B;C A;C;D ◦ ’ = F ( A; B; B ) G ( A; C; C ) H ( A; D; D ) A;B;C;D is not a well-defined extranatural transformation from F to H .

  10. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C !

  11. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C ! “ ” G , ,

  12. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C ! A B C “ ” G , ,

  13. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C ! A B C “ ” G , ,

  14. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C ! A B C “ ” G , , “ ” “ ” F f 1 1 F 1 1 1 , , , , ’ A;B;C F ( A; B; B ) G ( A; C; C ) = F ( f ; 1 ; 1) G ( f ; 1 ; 1) ! A ′ B C A B C ’ A ′ ;B;C F ( A ′ ; B; B ) G ( A ′ ; C; C ) “ ” “ ” G G 1 1 1 1 1 f , , , ,

  15. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C ! A B C “ ” G , , “ ” “ ” F f F , , , , ’ A;B;C F ( A; B; B ) G ( A; C; C ) = F ( f ; 1 ; 1) G ( f ; 1 ; 1) ! A ′ B C A B C ’ A ′ ;B;C F ( A ′ ; B; B ) G ( A ′ ; C; C ) “ ” “ ” G G f , , , ,

  16. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C ! A B C “ ” G , , “ ” “ ” g g F F , , , , F (1 ;g; 1) F ( A; B ′ ; B ) F ( A; B; B ) = ’ A;B;C ! F (1 ; 1 ;g ) A B ′ C A B C ’ A;B ′ ;C F ( A; B ′ ; B ′ ) G ( A; C; C ) “ ” “ ” G G , , , ,

  17. A string diagrammatic calculus F : A × B op × B → E , G : A × C op × C → E “ ” F , , ’ = ( ’ A;B;C : F ( A; B; B ) → G ( A; C; C )) A;B;C ! A B C “ ” G , , “ ” “ ” F F , , , , ’ A;B;C F ( A; B; B ) G ( A; C; C ) = ’ A;B;C ′ ! G (1 ; 1 ;h ) C ′ A B A B C G (1 ;h; 1) G ( A; C ′ ; C ′ ) G ( A; C; C ′ ) “ ” “ ” G G h h , , , ,

  18. A string diagrammatic calculus “ ” × ⇒ eval = ( eval A;B : A × ( A ⇒ B ) → B ) A;B ∈ C !

  19. A string diagrammatic calculus “ ” × ⇒ eval = ( eval A;B : A × ( A ⇒ B ) → B ) A;B ∈ C ! g f f “ ” “ ” eval A ′ ;B ′ ⇒ ⇒ × × A ′ × ( A ′ ⇒ B ) B ′ id f × ( id ⇒ g ) = A × ( A ′ ⇒ B ) ! B ′ id × ( f ⇒ id ) g A × ( A ⇒ B ′ ) B g eval A;B

  20. Eilenberg and Kelly’s theorem F ’ G H

  21. Eilenberg and Kelly’s theorem F F ’ ◦ ’ G H H

  22. Eilenberg and Kelly’s theorem F F ’ ◦ ’ G H H Theorem (Eilenberg, Kelly 1966) If the composite graph of ’ and is acyclic, then ◦ ’ is extranatural.

  23. Ramifications in the graphs ∗ C cartesian closed. ( ‹ A : A → A × A ) A ∈ C is a natural transformation f ‹ : id C → × with graph : Naturality of ‹ : = f f ∗ Cf. Kelly, Many-Variable Functorial Calculus I, 1972.

  24. Ramifications in the graphs ∗ C cartesian closed. ( ‹ A : A → A × A ) A ∈ C is a natural transformation f ‹ : id C → × with graph : Naturality of ‹ : = f f Consider ffl A;B = ( ‹ A × id A ⇒ B ) ; ( id A × eval A;B ) : A × ( A ⇒ B ) → A × B . ∗ Cf. Kelly, Many-Variable Functorial Calculus I, 1972.

  25. Ramifications in the graphs ∗ C cartesian closed. ( ‹ A : A → A × A ) A ∈ C is a natural transformation f ‹ : id C → × with graph : Naturality of ‹ : = f f Consider ffl A;B = ( ‹ A × id A ⇒ B ) ; ( id A × eval A;B ) : A × ( A ⇒ B ) → A × B . For f : A → A ′ the following commutes: f f fflA ′ ;B A ′ × ( A ′ ⇒ B ) A ′ × B 1 f × (1 ⇒ 1) = A × ( A ′ ⇒ B ) A ′ × B 1 × ( f ⇒ 1) f × 1 A × ( A ⇒ B ) A × B fflA;B f ffl is natural in B and dinatural in A . ∗ Cf. Kelly, Many-Variable Functorial Calculus I, 1972.

  26. The result F : C ¸ → D , G : C ˛ → D functors, where ¸; ˛ ∈ List { + ; −} , ’ = ( ’ A 1 ;:::;A k ) A 1 ;:::;A k ∈ C : F → G and = ( B 1 ;:::;B l ) B 1 ;:::;B l ∈ C : G → H dinatural transformations with graph Γ( ’ ) and Γ( ) . Theorem If the composition of Γ( ’ ) and Γ( ) is acyclic, then ◦ ’ is again dinatural.

  27. The incidence matrix Say n = number of upper and lower boxes in Γ( ’ ) , m = number of black squares in Γ( ’ ) . The incidence matrix of ’ is the n × m matrix A where 8 − 1 there is an arc from i to j > < A i;j = 1 there is an arc from j to i > 0 otherwise :

  28. The incidence matrix Say n = number of upper and lower boxes in Γ( ’ ) , m = number of black squares in Γ( ’ ) . The incidence matrix of ’ is the n × m matrix A where 8 − 1 there is an arc from i to j > < A i;j = 1 there is an arc from j to i > 0 otherwise : b 1 b 2 b 3 s 1 s 2 b 1 − 1 0 2 3 b 2 1 0 s 1 s 2 6 7 b 3 0 − 1 4 5 b 4 0 1 b 4

  29. The incidence matrix Say n = number of upper and lower boxes in Γ( ’ ) , m = number of black squares in Γ( ’ ) . The incidence matrix of ’ is the n × m matrix A where 8 − 1 there is an arc from i to j > < A i;j = 1 there is an arc from j to i > 0 otherwise : b 1 b 2 b 3 s 1 s 2 f b 1 − 1 0 1 2 3 2 3 b 2 1 0 0 s 1 s 2 6 7 6 7 b 3 0 − 1 0 4 5 4 5 b 4 0 1 0 b 4

  30. The incidence matrix Say n = number of upper and lower boxes in Γ( ’ ) , m = number of black squares in Γ( ’ ) . The incidence matrix of ’ is the n × m matrix A where 8 − 1 there is an arc from i to j > < A i;j = 1 there is an arc from j to i > 0 otherwise : b 1 b 2 b 3 b 1 b 2 b 3 s 1 s 2 f f b 1 − 1 0 1 0 2 3 2 3 2 3 » – b 2 1 0 1 0 1 = 0 + = s 1 s 2 s 1 s 2 6 7 6 7 6 7 b 3 0 − 1 0 0 4 5 4 5 4 5 b 4 0 1 0 0 b 4 b 4

  31. A reachability problem 2 − 1 0 0 0 3 0 1 0 0 6 7 6 7 1 0 − 1 0 6 7 A = 6 7 1 0 0 − 1 6 7 6 7 0 − 1 0 1 4 5 0 0 1 0

  32. A reachability problem 2 − 1 0 0 0 3 0 1 0 0 6 7 6 7 1 0 − 1 0 6 7 A = 6 7 1 0 0 − 1 6 7 6 7 0 − 1 0 1 4 5 0 0 1 0 ◦ ’ · · ( 1 b is a white upper/grey lower box F (1 ;f ) H ( f ; 1) M o ( b ) = 0 otherwise · · ( 1 b is a grey upper/white lower box M d ( b ) = F ( f ; 1) H (1 ;f ) 0 otherwise · · ◦ ’

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend