a nice proof of wei s duality theorem
play

A nice proof of Weis Duality Theorem Thomas Britz UNSW Sydney 1 0 - PowerPoint PPT Presentation

Discrete Maths Research Group Monash University 20170306 A nice proof of Weis Duality Theorem Thomas Britz UNSW Sydney 1 0 1 0 1 0 1 Coding Theory Combinatorics 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 Coding Theory Combinatorics 0


  1. linear code rank function 1 2 3 4 5 1 0 1 0 0 0 1 1 0 0 ρ ( 124 ) = 3 0 0 0 1 1 Tutte polynomial � x ρ ( E ) − ρ ( A ) y | A |− ρ ( A ) T ( x + 1 , y + 1) = A ⊆ E = 6 + 9 x + 5 x 2 + x 3 + 5 y + y 2 + 4 xy + x 2 y

  2. linear code rank function 1 2 3 4 5 1 0 1 0 0 0 1 1 0 0 ρ ( 124 ) = 3 0 0 0 1 1 Tutte polynomial and rank generator function � x ρ ( E ) − ρ ( A ) y | A |− ρ ( A ) T ( x + 1 , y + 1) = R ( x, y ) = A ⊆ E = 6 + 9 x + 5 x 2 + x 3 + 5 y + y 2 + 4 xy + x 2 y

  3. linear code rank function 1 2 3 4 5 1 0 1 0 0 0 1 1 0 0 ρ ( 124 ) = 3 0 0 0 1 1 Tutte polynomial and rank generator function � x ρ ( E ) − ρ ( A ) y | A |− ρ ( A ) T ( x + 1 , y + 1) = R ( x, y ) = A ⊆ E = 6 + 9 x + 5 x 2 + x 3 + 5 y + y 2 + 4 xy + x 2 y ... and coboundary polynomial χ ( xy, y + 1 , 1) = y ρ ( E ) R ( x, y )

  4. Tutte polynomial and rank generator function � x ρ ( E ) − ρ ( A ) y | A |− ρ ( A ) T ( x + 1 , y + 1) = R ( x, y ) = A ⊆ E ... and coboundary polynomial χ ( xy, y + 1 , 1) = y ρ ( E ) R ( x, y )

  5. Tutte polynomial and rank generator function � x ρ ( E ) − ρ ( A ) y | A |− ρ ( A ) T ( x + 1 , y + 1) = R ( x, y ) = A ⊆ E ... and coboundary polynomial χ ( xy, y + 1 , 1) = y ρ ( E ) R ( x, y ) Lemma R C ⊥ ( x, y ) = R C ( y, x ) T C ⊥ ( x, y ) = T C ( y, x ) χ C ⊥ ( λ, x, y ) = λ − ρ C ( E ) χ C ( λ, x + ( λ − 1) y, x − y )

  6. Tutte polynomial and rank generator function � x ρ ( E ) − ρ ( A ) y | A |− ρ ( A ) T ( x + 1 , y + 1) = R ( x, y ) = A ⊆ E ... and coboundary polynomial χ ( xy, y + 1 , 1) = y ρ ( E ) R ( x, y ) Lemma R C ⊥ ( x, y ) = R C ( y, x ) T C ⊥ ( x, y ) = T C ( y, x ) χ C ⊥ ( λ, x, y ) = λ − ρ C ( E ) χ C ( λ, x + ( λ − 1) y, x − y ) Proof ρ C ( E ) − ρ C ( A ) = | E − A | − ρ C ⊥ ( E − A ) �

  7. MacWilliams Identity (1963) W C ⊥ ( x, y ) = 1 q k W C ( x + ( q − 1) y, x − y ) 1 0 1 0 0 W C ( x, y ) = x 5 + 4 x 3 y 2 + 3 xy 4 0 1 1 0 0 C 0 0 0 1 1 W C ⊥ ( x, y ) = 1 1 1 1 0 0 C ⊥ q k W C ( x + ( q − 1) y, x − y ) 0 0 0 1 1 = 1 1 + 4( x + y ) 3 ( x − y ) 2 + 4( x + y )( x − y ) 4 � � 2 3 = x 5 + x 3 y 2 + x 2 y 3 + y 5

  8. MacWilliams Identity (1963) W C ⊥ ( x, y ) = 1 q k W C ( x + ( q − 1) y, x − y ) 1 0 1 0 0 W C ( x, y ) = x 5 + 4 x 3 y 2 + 3 xy 4 0 1 1 0 0 C 0 0 0 1 1 Greene’s Theorem (1976) W C ( x, y ) = χ C ( q, x, y )

  9. MacWilliams Identity (1963) W C ⊥ ( x, y ) = 1 q k W C ( x + ( q − 1) y, x − y ) 1 0 1 0 0 W C ( x, y ) = χ (2 , x, y ) = x 5 + 4 x 3 y 2 + 3 xy 4 0 1 1 0 0 C 0 0 0 1 1 Greene’s Theorem (1976) W C ( x, y ) = χ C ( q, x, y )

  10. MacWilliams Identity (1963) W C ⊥ ( x, y ) = 1 q k W C ( x + ( q − 1) y, x − y ) Proof Greene’s Theorem (1976) W C ( x, y ) = χ C ( q, x, y )

  11. MacWilliams Identity (1963) W C ⊥ ( x, y ) = 1 q k W C ( x + ( q − 1) y, x − y ) Proof W C ⊥ ( x, y ) = χ C ⊥ ( q, x, y ) Greene’s Theorem (1976) W C ( x, y ) = χ C ( q, x, y )

  12. MacWilliams Identity (1963) W C ⊥ ( x, y ) = 1 q k W C ( x + ( q − 1) y, x − y ) Proof W C ⊥ ( x, y ) = χ C ⊥ ( q, x, y ) = q − ρ ( E ) χ C ( q, x + ( q − 1) y, x − y ) Greene’s Theorem (1976) W C ( x, y ) = χ C ( q, x, y )

  13. MacWilliams Identity (1963) W C ⊥ ( x, y ) = 1 q k W C ( x + ( q − 1) y, x − y ) Proof W C ⊥ ( x, y ) = χ C ⊥ ( q, x, y ) = q − ρ ( E ) χ C ( q, x + ( q − 1) y, x − y ) = 1 q k W C ( x + ( q − 1) y, x − y ) � Greene’s Theorem (1976) W C ( x, y ) = χ C ( q, x, y )

  14. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C

  15. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C “The Critical Theorem”

  16. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005

  17. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976

  18. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 “Greene’s Theorem”

  19. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007

  20. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010

  21. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C

  22. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005

  23. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963

  24. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 “The MacWilliams’ Identity”

  25. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005

  26. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008

  27. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008

  28. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports

  29. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports t -designs from matroids and subcode supports BS 2008, BRS 2009

  30. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports t -designs from matroids and subcode supports BS 2008, BRS 2009 Minimal subcode weights of C determine those of C ⊥ Wei 1991

  31. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports t -designs from matroids and subcode supports BS 2008, BRS 2009 Minimal subcode weights of C determine those of C ⊥ Wei 1991 “Wei’s Duality Theorem”

  32. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports t -designs from matroids and subcode supports BS 2008, BRS 2009 Minimal subcode weights of C determine those of C ⊥ Wei 1991 BJMS 2012 Matroid extensions of this result

  33. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports t -designs from matroids and subcode supports BS 2008, BRS 2009 Minimal subcode weights of C determine those of C ⊥ Wei 1991 BJMS 2012 Matroid extensions of this result DESD [48,24,12] code higher weight enumerators BBSS 2007

  34. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports t -designs from matroids and subcode supports BS 2008, BRS 2009 Minimal subcode weights of C determine those of C ⊥ Wei 1991 BJMS 2012 Matroid extensions of this result DESD [48,24,12] code higher weight enumerators BBSS 2007

  35. = a linear code over a finite field F q C Crapo Rota 1970 ρ C determines the codeword supports of C An infinite class of such results, eg. subcode supports Britz 2005 A small part of ρ C determines C ’s codeword weights Greene 1976 The same small part determines C ’s subcode weights Britz 2007 Tutte polynomial and subcode weights are equivalent Britz 2010 Skorabogatov 1992 ρ C does not determine the covering radius of C Other properties of C not determined by ρ C BR 2005 The codeword weights of C determine those of C ⊥ MacWilliams 1963 An infinite class of MacWilliams-type results Britz 2005 A general MacWilliams-type result for matroids BS 2008 Matroid extensions of [Delsarte 1972, Duursma 2003] BS 2008 Assmus Mattson 1969 t -designs from codeword supports t -designs from matroids and subcode supports BS 2008, BRS 2009 Minimal subcode weights of C determine those of C ⊥ Wei 1991 BJMS 2012 Matroid extensions of this result DESD [48,24,12] code higher weight enumerators BBSS 2007 CGB 2010, CGB 2013, BJM 2014, BSW 2015, BC Related results

  36. linear code 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1

  37. linear code 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 subcodes

  38. linear code 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes

  39. linear code 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1

  40. linear code 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 3 4 5 4 5 4 5

  41. linear code 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 3 4 5 4 5 4 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 5

  42. linear code higher weights d 1 = 1 0 1 0 0 d 2 = 0 1 1 0 0 0 0 0 1 1 d 3 = 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 3 4 5 4 5 4 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 5

  43. linear code higher weights d 1 = 2 1 0 1 0 0 d 2 = 0 1 1 0 0 0 0 0 1 1 d 3 = 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 3 4 5 4 5 4 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 5

  44. linear code higher weights d 1 = 2 1 0 1 0 0 d 2 = 3 0 1 1 0 0 0 0 0 1 1 d 3 = 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 3 4 5 4 5 4 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 5

  45. linear code higher weights d 1 = 2 1 0 1 0 0 d 2 = 3 0 1 1 0 0 0 0 0 1 1 d 3 = 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 3 4 5 4 5 4 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 5

  46. linear code higher weights d ⊥ d 1 = 2 1 = 2 1 0 1 0 0 d ⊥ d 2 = 3 2 = 5 0 1 1 0 0 0 0 0 1 1 d 3 = 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 2 2 2 2 4 4 4 subcodes 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 3 4 5 4 5 4 5 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend