a method overcoming induction during cut elimination
play

A Method Overcoming Induction During Cut-elimination Mikheil - PowerPoint PPT Presentation

A Method Overcoming Induction During Cut-elimination Mikheil Rukhaia joint work with C. Dunchev, A. Leitsch and D. Weller Symposium on Language, Logic and Computation, Gudauri, Georgia. September 27, 2013 Introduction Schematic Proof Systems


  1. A Method Overcoming Induction During Cut-elimination Mikheil Rukhaia joint work with C. Dunchev, A. Leitsch and D. Weller Symposium on Language, Logic and Computation, Gudauri, Georgia. September 27, 2013

  2. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Introduction A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 2 / 43

  3. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Aim ◮ Proof mining. ◮ Extraction of explicit information from proofs. ◮ Via cut-elimination: the removal of lemmas in proofs. A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 3 / 43

  4. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Cut-Elimination and Induction ◮ Induction: an infinitary modus ponens rule. ◮ Cut-elimination in the presence of induction: not possible. ◮ A solution: avoid induction using schemata. A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 4 / 43

  5. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Extension of LK ◮ Induction rule: Γ ⊢ ∆ , A (¯ 0 ) Π , A ( α ) ⊢ Λ , A ( s ( α )) ind Γ , Π ⊢ ∆ , Λ , A ( t ) ◮ Equational rule: S [ t ] E S [ t ′ ] = t = t ′ . with the condition that an equational theory E | A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 5 / 43

  6. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary A Motivating Example ◮ E = { ˆ f ( 0 , x ) = x , ˆ f ( s ( n ) , x ) = f (ˆ f ( n , x )) } . = ˆ ◮ E | f ( n , x ) = f n ( x ) . ◮ We prove S : ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ ( ∀ n )(( P (ˆ f ( n , c )) ⇒ P ( g ( n , c ))) ⇒ ( P ( c ) ⇒ P ( g ( n , c )))) A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 6 / 43

  7. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary A Motivating Example (ctd.) ◮ ϕ is: � � � � � � ( 1 ) ψ C ⊢ ( ∀ n )(( P (ˆ ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ C f ( n , c )) ⇒ P ( g ( n , c ))) ⇒ ( P ( c ) ⇒ P ( g ( n , c )))) cut ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ ( ∀ n )(( P (ˆ f ( n , c )) ⇒ P ( g ( n , c ))) ⇒ ( P ( c ) ⇒ P ( g ( n , c )))) ◮ C = ( ∀ n )( ∀ x )( P ( x ) ⇒ P (ˆ f ( n , x ))) and (1) is: P (ˆ f ( β, c )) ⊢ P (ˆ f ( β, c )) P ( g ( β, c )) ⊢ P ( g ( β, c )) ⇒ : l P (ˆ f ( β, c )) ⇒ P ( g ( β, c )) , P (ˆ P ( c ) ⊢ P ( c ) f ( β, c )) ⊢ P ( g ( β, c )) ⇒ : l P ( c ) , P (ˆ f ( β, c )) ⇒ P ( g ( β, c )) , P ( c ) ⇒ P (ˆ f ( β, c )) ⊢ P ( g ( β, c )) ⇒ : r P (ˆ f ( β, c )) ⇒ P ( g ( β, c )) , P ( c ) ⇒ P (ˆ f ( β, c )) ⊢ P ( c ) ⇒ P ( g ( β, c )) ⇒ : r P ( c ) ⇒ P (ˆ f ( β, c )) ⊢ ( P (ˆ f ( β, c )) ⇒ P ( g ( β, c ))) ⇒ ( P ( c ) ⇒ P ( g ( β, c ))) ∀ : l ∗ ( ∀ n )( ∀ x )( P ( x ) ⇒ P (ˆ f ( n , x ))) ⊢ ( P (ˆ f ( β, c )) ⇒ P ( g ( β, c ))) ⇒ ( P ( c ) ⇒ P ( g ( β, c ))) ∀ : r ( ∀ n )( ∀ x )( P ( x ) ⇒ P (ˆ f ( n , x ))) ⊢ ( ∀ n )(( P (ˆ f ( n , c )) ⇒ P ( g ( n , c ))) ⇒ ( P ( c ) ⇒ P ( g ( n , c )))) A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 7 / 43

  8. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary A Motivating Example (ctd.) ◮ ψ is: P (ˆ f (¯ 0 , u )) ⊢ P (ˆ f (¯ 0 , u )) E P ( u ) ⊢ P (ˆ f (¯ 0 , u )) � ⇒ : r � � ( 2 ) ⊢ P ( u ) ⇒ P (ˆ f (¯ 0 , u )) ∀ : r ⊢ ( ∀ x )( P ( x ) ⇒ P (ˆ f (¯ A , ( ∀ x )( P ( x ) ⇒ P (ˆ f ( α, x ))) ⊢ ( ∀ x )( P ( x ) ⇒ P (ˆ 0 , x ))) f ( s ( α ) , x ))) ind ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ ( ∀ x )( P ( x ) ⇒ P (ˆ f ( γ, x ))) ∀ : r ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ ( ∀ n )( ∀ x )( P ( x ) ⇒ P (ˆ f ( n , x ))) ◮ A = ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) and (2) is: P (ˆ f ( s ( α ) , u )) ⊢ P (ˆ f ( s ( α ) , u )) E P (ˆ f ( α, u )) ⊢ P (ˆ P ( f (ˆ f ( α, u ))) ⊢ P (ˆ f ( α, u )) f ( s ( α ) , u )) ⇒ : l P (ˆ f ( α, u )) ⇒ P ( f (ˆ f ( α, u ))) , P (ˆ f ( α, u )) ⊢ P (ˆ f ( s ( α ) , u )) ∀ : l ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) , P (ˆ f ( α, u )) ⊢ P (ˆ P ( u ) ⊢ P ( u ) f ( s ( α ) , u )) ⇒ : l P ( u ) , ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) , P ( u ) ⇒ P (ˆ f ( α, u )) ⊢ P (ˆ f ( s ( α ) , u )) ⇒ : r ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) , P ( u ) ⇒ P (ˆ f ( α, u )) ⊢ P ( u ) ⇒ P (ˆ f ( s ( α ) , u )) ∀ : l ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) , ( ∀ x )( P ( x ) ⇒ P (ˆ f ( α, x ))) ⊢ P ( u ) ⇒ P (ˆ f ( s ( α ) , u ))) ∀ : r ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) , ( ∀ x )( P ( x ) ⇒ P (ˆ f ( α, x ))) ⊢ ( ∀ x )( P ( x ) ⇒ P (ˆ f ( s ( α ) , x ))) A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 8 / 43

  9. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary A Motivating Example (ctd.) ◮ After some reduction steps: � � � � � � ( 1 ′ ) ψ ind A ⊢ ( ∀ x )( P ( x ) ⇒ P (ˆ ( ∀ x )( P ( x ) ⇒ P (ˆ f ( β, x ))) f ( β, x ))) ⊢ B cut ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ ( P (ˆ f ( β, c )) ⇒ P ( g ( β, c ))) ⇒ ( P ( c ) ⇒ P ( g ( β, c )))) ∀ : r ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ ( ∀ n )(( P (ˆ f ( n , c )) ⇒ P ( g ( n , c ))) ⇒ ( P ( c ) ⇒ P ( g ( n , c )))) ◮ Cannot proceed! ◮ In fact, there is no cut-free proof of S , induction on ( ∀ n )(( P (ˆ f ( n , c )) ⇒ P ( g ( n , c ))) ⇒ ( P ( c ) ⇒ P ( g ( n , c )))) fails. A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 9 / 43

  10. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary A Motivating Example (ctd.) ◮ The sequents S n : ( ∀ x )( P ( x ) ⇒ P ( f ( x ))) ⊢ ( P (ˆ f (¯ n , c )) ⇒ P ( g (¯ n , c ))) ⇒ ( P ( c ) ⇒ P ( g (¯ n , c ))) do have cut-free proofs for all ¯ n . ◮ Uniform description of the sequence of cut-free proofs is needed. ◮ Develop machinery to obtain such a description. A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 10 / 43

  11. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Schematic Proof Systems A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 11 / 43

  12. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Language ◮ Consider two sorts ω, ι . ◮ Our language consists of: arithmetical variables i , j , k , n : ω , first-order variables x , y , z : ι , schematic variables u , v : ω → ι , constant function symbols f , g : τ 1 × · · · × τ n → τ , defined function symbols ˆ f , ˆ g : ω × τ 1 × · · · × τ n → τ , predicate symbols P , Q and the logical connectives ¬ , ∧ , ∨ , ⇒ , ∀ , ∃ , � , � . A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 12 / 43

  13. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Language (ctd.) ◮ Terms are defined in usual inductive fashion using variables and constant function symbols. ◮ Arithmetical terms are subset of terms constructed using 0 : ω, s : ω → ω, +: ω × ω → ω and arithmetical variables. ◮ Formulas are defined in usual inductive fashion using predicate symbols and connectives ¬ , ∧ , ∨ , ⇒ , ∀ , ∃ (quantification is allowed only on first-order variables). A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 13 / 43

  14. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Language (ctd.) ◮ Term schemata: terms and primitive recursion on terms using defined function symbols, i.e. for every ˆ f : ˆ f ( 0 , x 1 , . . . , x n ) → s , ˆ t [ˆ f ( k + 1 , x 1 , . . . , x n ) → f ( k , x 1 , . . . , x n )] s.t. V ( s ) ∪ V ( t ) = { x 1 , . . . , x n } and s , t are terms. ◮ Example: ˆ f ( n , x ) defining f n ( x ) : ˆ → f ( 0 , x ) x , ˆ f (ˆ f ( k + 1 , x ) → f ( k , x )) . A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 14 / 43

  15. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Language (ctd.) ◮ Formula schemata: formulas are formula schemata and if A is a formula schema, then � b i = a A and � b i = a A are formula schemata as well. ◮ Example: ( ∃ y )( � n i = 0 ( ∀ x ) A ( i , x , y )) defining ( ∃ y )(( ∀ x ) A ( 0 , x , y ) ∨ · · · ∨ ( ∀ x ) A ( n , x , y )) which is equivalent to ( ∃ y )(( ∀ x 0 ) A ( 0 , x 0 , y ) ∨ · · · ∨ ( ∀ x n ) A ( n , x n , y )) . A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 15 / 43

  16. Introduction Schematic Proof Systems Cut-Elimination in Proof Schemata Summary Calculus LK s ◮ Sequent: expression S ( x 1 , . . . , x α ): Γ ⊢ ∆ . ( ϕ ( a 1 , . . . , a α )) ◮ Proof link: expression S ( a 1 , . . . , a α ) ◮ Axioms: proof links or A ⊢ A . ◮ Usual LK rules operating on formula schemata and the E rule. A Method for Inductive Cut-elimination M. Rukhaia TbiLLC’2013, Gudauri, Georgia Sep 27, 2013 16 / 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend