a logarithmic additive integrality gap for bin packing
play

A Logarithmic Additive Integrality Gap for Bin Packing Rebecca - PowerPoint PPT Presentation

A Logarithmic Additive Integrality Gap for Bin Packing Rebecca Hoberg and Thomas Rothvoss Dep. of Mathematics Dep. of Mathematics & CSE Barbados 2015 Bin Packing Input: Items with sizes s 1 , . . . , s n [0 , 1] Goal: Pack items into


  1. Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x 0 0 1

  2. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each y direction x 0 0 1

  3. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each y direction x 0 0 1

  4. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each y direction x 0 0 1

  5. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction y x 0 0 1

  6. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x y 0 0 1

  7. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction y x 0 0 1

  8. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x y 0 0 1

  9. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x y 0 0 1

  10. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x (2) If hit hyperplane, stay on it y 0 0 1

  11. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x (2) If hit hyperplane, stay on it y 0 0 1

  12. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x (2) If hit hyperplane, stay on it y 0 0 1

  13. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x (2) If hit hyperplane, stay on it y 0 0 1

  14. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction x (2) If hit hyperplane, stay on it y 0 0 1

  15. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each direction y x (2) If hit hyperplane, stay on it 0 0 1

  16. b Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each y direction x (2) If hit hyperplane, stay on it 0 0 1

  17. Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion with std. deviation 3 in each b y direction x (2) If hit hyperplane, stay on it 0 0 1

  18. Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion v i with std. deviation 3 in each λ i b y direction x (2) If hit hyperplane, stay on it ◮ Analysis: ◮ Pr[hit � v i , y − x � = λ i ] ≤ e − Ω( λ 2 i ) 0 0 1

  19. Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion v i with std. deviation 3 in each λ i b y direction x (2) If hit hyperplane, stay on it ◮ Analysis: ◮ Pr[hit � v i , y − x � = λ i ] ≤ e − Ω( λ 2 i ) E [# constraints hit] ≤ m ◮ 0 16 0 1

  20. Constructive Partial Coloring Lemma Lemma [Lovett-Meka ’12] Given x ∈ [0 , 1] m , unit vectors v i , parameters λ i ≥ 0 s.t. i / 16 ≤ m 16 . Then one can find y ∈ [0 , 1] m with i e − λ 2 � ◮ y j ∈ { 0 , 1 } for at least half of the indices j ◮ | � v i , y − x � | ≤ λ i · � v i � 2 ∀ i ◮ Algorithm: 1 (1) Perform Brownian motion v i with std. deviation 3 in each λ i b y direction x (2) If hit hyperplane, stay on it ◮ Analysis: ◮ Pr[hit � v i , y − x � = λ i ] ≤ e − Ω( λ 2 i ) E [# constraints hit] ≤ m ◮ 0 16 0 1

  21. The algorithm (1) Compute a fractional LP solution x (2) FOR log n iterations DO (3) Rebuild incidence matrix (4) Apply Lovett-Meka rounding x → x ′

  22. The algorithm (1) Compute a fractional LP solution x (2) FOR log n iterations DO (3) Rebuild incidence matrix Effect: Rows of A get small � · � 2 -norm (4) Apply Lovett-Meka rounding x → x ′

  23. The algorithm (1) Compute a fractional LP solution x (2) FOR log n iterations DO (3) Rebuild incidence matrix Effect: Rows of A get small � · � 2 -norm (4) Apply Lovett-Meka rounding x → x ′ Effect: ◮ | frac( x ′ ) | ≤ 1 2 · | frac( x ) |

  24. The algorithm (1) Compute a fractional LP solution x (2) FOR log n iterations DO (3) Rebuild incidence matrix Effect: Rows of A get small � · � 2 -norm (4) Apply Lovett-Meka rounding x → x ′ Effect: ◮ | frac( x ′ ) | ≤ 1 2 · | frac( x ) | ◮ cost( x ′ ) ≤ cost( x ) + O (1)

  25. Assigning items to patterns b 1 = 2 b 2 = 1 b 3 = 7 Items: Bins: x p 1 = 1 x p 2 = 1 x p 3 = 1 2 2 2

  26. Assigning items to patterns b 1 = 2 b 2 = 1 b 3 = 7 Items: 1 1 1 1 2 2 2 2 Bins: x p 1 = 1 x p 2 = 1 x p 3 = 1 2 2 2

  27. Assigning items to patterns b 1 = 2 b 2 = 1 b 3 = 7 Items: 1 1 1 1 1 2 2 2 1 2 2 1 1 2 1 1 2 2 2 2 Bins: x p 1 = 1 x p 2 = 1 x p 3 = 1 2 2 2

  28. Assigning items to patterns b 1 = 2 b 2 = 1 b 3 = 7 Items: y C 1 = 1 y C 2 = 1 y C 3 = 2 Containers: Bins: x p 1 = 1 x p 2 = 1 x p 3 = 1 2 2 2

  29. Assigning items to patterns b 1 = 2 b 2 = 1 b 3 = 7 Items: 1 1 2 2 1 1 1 y C 1 = 1 y C 2 = 1 y C 3 = 2 Containers: 1 2 1 1 1 2 2 1 1 1 2 2 2 2 Bins: x p 1 = 1 x p 2 = 1 x p 3 = 1 2 2 2

  30. Assigning items to patterns b 1 = 2 b 2 = 1 b 3 = 7 Items: 1 1 2 2 1 1 1 y C 1 = 1 y C 2 = 1 y C 3 = 2 Containers: 1 2 1 1 1 2 2 1 1 1 2 2 2 2 Bins: x p 1 = 1 x p 2 = 1 x p 3 = 1 2 2 2 ◮ deficiency = total size of non-assignable items+containers

  31. Container building ◮ Consider fract. solution x at beginning of iteration 2 A

  32. Container building ◮ Consider fract. solution x at beginning of iteration supp(x) 2 A

  33. Container building ◮ Consider fract. solution x at beginning of iteration supp(x) 2 A . . . pattern p

  34. Container building ◮ Consider fract. solution x at beginning of iteration supp(x) 2 A container C . . . pattern p

  35. Container building ◮ Consider fract. solution x at beginning of iteration supp(x) Lemma Can reassign containers so that for container C of size s C ∈ [ 1 k , 2 k ]: 2 ◮ Each row has ∗ � A C � 1 ≥ k 1 / 2 A container C ◮ All entries ≤ k 1 / 4 Deficiency increase is O (1). . . ∗ modulo technicalities . pattern p

  36. Container building (2) container: patterns: For each size class [ 1 k , 2 k ] (starting with smallest items) do:

  37. Container building (2) container: patterns: For each size class [ 1 k , 2 k ] (starting with smallest items) do: → cost O ( k 1 / 2 (1) Group containers so that � A C � 1 ≥ k 1 / 2 k )

  38. Container building (2) k 1 / 4 container: patterns: k 1 / 4 For each size class [ 1 k , 2 k ] (starting with smallest items) do: → cost O ( k 1 / 2 (1) Group containers so that � A C � 1 ≥ k 1 / 2 k )

  39. Container building (2) container: patterns: For each size class [ 1 k , 2 k ] (starting with smallest items) do: → cost O ( k 1 / 2 (1) Group containers so that � A C � 1 ≥ k 1 / 2 k ) (2) Replace any multiples of k 1 / 4 copies of same container in same pattern by super-container

  40. Container building (2) container: patterns: For each size class [ 1 k , 2 k ] (starting with smallest items) do: → cost O ( k 1 / 2 (1) Group containers so that � A C � 1 ≥ k 1 / 2 k ) (2) Replace any multiples of k 1 / 4 copies of same container in same pattern by super-container ◮ Deficiency increase: O ( k 1 / 2 · 1 k 1 / 2 ) for class 1 1 k ) = Θ( k .

  41. Container building (2) container: patterns: For each size class [ 1 k , 2 k ] (starting with smallest items) do: → cost O ( k 1 / 2 (1) Group containers so that � A C � 1 ≥ k 1 / 2 k ) (2) Replace any multiples of k 1 / 4 copies of same container in same pattern by super-container ◮ Deficiency increase: O ( k 1 / 2 · 1 k 1 / 2 ) for class 1 1 k ) = Θ( k . ◮ Over all k : � k Θ( k − 1 / 2 ) = O (1)

  42. Applying the Partial Coloring Lemma . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 A 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . .

  43. Applying the Partial Coloring Lemma . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 A 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small

  44. Applying the Partial Coloring Lemma . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k

  45. Applying the Partial Coloring Lemma . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 I 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k ◮ For interval I ⊆ [ n ]:

  46. Applying the Partial Coloring Lemma . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 I 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 + . . . . . . . . . . . . . . . . . . . . . . . . v I = ( 1 0 2 1 1 1 1 1 ) ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k ◮ For interval I ⊆ [ n ]: v I := � i ∈ I A i

  47. Applying the Partial Coloring Lemma 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 � v I � 1 = ck 17 / 16 I 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k ◮ For interval I ⊆ [ n ]: v I := � i ∈ I A i

  48. Applying the Partial Coloring Lemma 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 � v I � 1 = 2 − 1 ck 17 / 16 I 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k ◮ For interval I ⊆ [ n ]: v I := � i ∈ I A i

  49. Applying the Partial Coloring Lemma 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 � v I � 1 = 2 − 2 ck 17 / 16 I 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k ◮ For interval I ⊆ [ n ]: v I := � i ∈ I A i

  50. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 � v I � 1 = 2 − 3 ck 17 / 16 I 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k ◮ For interval I ⊆ [ n ]: v I := � i ∈ I A i

  51. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 � v I � 1 = 2 − 3 ck 17 / 16 I 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◮ Given: x . Find: y with | ( � j ≤ i A j )( x − y ) | small ◮ Suppose 1 k ≤ s i ≤ 2 k ◮ For interval I ⊆ [ n ]: v I := � i ∈ I A i , λ I := level( I )

  52. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Run Partial coloring with v I := � i ∈ I A i and λ I := level( I )

  53. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Run Partial coloring with v I := � i ∈ I A i and λ I := level( I ) � e − λ 2 I / 16 I

  54. Applying the Partial Coloring Lemma sum ≤ k 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Run Partial coloring with v I := � i ∈ I A i and λ I := level( I ) k · m I / 16 ≤ � e − λ 2 � ck 17 / 16 2 − ℓ · e − ℓ 2 / 16 I ℓ ≥ 0

  55. Applying the Partial Coloring Lemma sum ≤ k 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Run Partial coloring with v I := � i ∈ I A i and λ I := level( I ) k · m m I / 16 ≤ ck 17 / 16 2 − ℓ · e − ℓ 2 / 16 ≤ � e − λ 2 � 100 · k 1 / 16 I ℓ ≥ 0

  56. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 i 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Bound error for item i : � | ( A j )( x − y ) | ≤ j ≤ i

  57. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 i 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Bound error for item i : � | ( A j )( x − y ) | ≤ j ≤ i

  58. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Bound error for item i : � � | ( A j )( x − y ) | ≤ ℓ · � v I on level ℓ � 2 j ≤ i ℓ ≥ 0

  59. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 � v I � 1 = Θ( k 17 / 16 ) I 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Bound error for item i : � � | ( A j )( x − y ) | ≤ ℓ · � v I on level ℓ � 2 ≤ O (1) · � v I � 2 j ≤ i ℓ ≥ 0

  60. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 � v I � 1 = Θ( k 17 / 16 ) I 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Bound error for item i : � � | ( A j )( x − y ) | ≤ ℓ · � v I on level ℓ � 2 ≤ O (1) · � v I � 2 j ≤ i ℓ ≥ 0 � k 1 / 4 H¨ older ≤ � v I � 1 · k 1 / 2

  61. Applying the Partial Coloring Lemma 3 2 1 0 ← level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 � v I � 1 = Θ( k 17 / 16 ) I 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m columns ◮ Bound error for item i : � � | ( A j )( x − y ) | ≤ ℓ · � v I on level ℓ � 2 ≤ O (1) · � v I � 2 j ≤ i ℓ ≥ 0 � k 1 / 4 H¨ older k 1 / 2 ≤ O ( k 15 / 16 ) ≤ � v I � 1 ·

  62. The algorithm (1) Compute a fractional LP solution x (2) FOR log n iterations DO (3) Rebuild incidence matrix Effect: Rows of A get small � · � 2 -norm (4) Apply Lovett-Meka rounding x → x ′ Effect: | frac( x ′ ) | ≤ 1 2 · | frac( x ) |

  63. The algorithm (1) Compute a fractional LP solution x (2) FOR log n iterations DO (3) Rebuild incidence matrix Effect: Rows of A get small � · � 2 -norm Deficiency increase: O (1) (4) Apply Lovett-Meka rounding x → x ′ Effect: | frac( x ′ ) | ≤ 1 2 · | frac( x ) |

  64. The algorithm (1) Compute a fractional LP solution x (2) FOR log n iterations DO (3) Rebuild incidence matrix Effect: Rows of A get small � · � 2 -norm Deficiency increase: O (1) (4) Apply Lovett-Meka rounding x → x ′ Effect: | frac( x ′ ) | ≤ 1 2 · | frac( x ) | k O ( k 15 / 16 ) · 1 Deficiency increase: � k = O (1)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend