a first contact with star ccm
play

A first contact with STAR-CCM+ Comparing analytical and finite - PowerPoint PPT Presentation

A first contact with STAR-CCM+ Comparing analytical and finite volume solutions with STAR-CCM+ simulations Michael Heyer Analytical Finite volumes STAR-CCM+ What is ParisTech? ParisTech is a consortium of 12 of the most prestigious


  1. A first contact with STAR-CCM+ Comparing analytical and finite volume solutions with STAR-CCM+ simulations Michael Heyer

  2. Analytical  Finite volumes  STAR-CCM+ What is ParisTech? ParisTech is a consortium of 12 of the most prestigious French institutes of education and research Best University in France in Production Engineering and Manufacturing Engineering 1000 graduate engineers per year A powerful network that unites and rationalize strength while bringing international visibility 2 / 21 michael.heyer@metz.ensam.fr

  3. Analytical  Finite volumes  STAR-CCM+ Study program of our students : Objectif: to show the relationship between the analytical solution, the finite volume solution and the STAR-CCM+ simulation for the same problem 12 h : 2.5 h Discovering of STAR-CCM+ Poiseuille flow → Analytical solution 2 h → STAR-CCM+ simulation → Why is there a difference? Oil film of a plain cylindrical journal bearing: 1.5 h → Analytical solution → Numerical solution : the finite volume equation 2 h → Numerical solution : programming the finite volume equation 2 h → STAR-CCM+ simulation 2 h 3 / 21 michael.heyer@metz.ensam.fr

  4. Analytical  Finite volumes  STAR-CCM+ Poiseuille flow → Analytical solution → STAR-CCM+ simulation → Why is there a difference? Oil film in a bearing Poiseuille flow : laminar flow in a tube v z (r) r) : fluid velocity at the distance r from the 𝐰 𝒜 𝒔 = ∆𝒒 𝟓 𝑴 𝝂 𝑺 𝟑 − 𝒔 𝟑 central axis [m/s] D p: : pressure difference between the inlet and the outlet of the tube: 10 Pa r [cm] v z (r) [m/s] L: tube length: 50 cm m: dynamical viscosity (water): 8.8871  10 -4 Pa  s 0 0.141 R: tube radius: 0.5 cm 0.125 0.132 r: distance from the central axis: 0 cm, 0.125 cm, 0.25 cm, 0.375 cm, 0.5 cm 0.25 0.105 0.375 0.062 0.5 0 4 / 21 michael.heyer@metz.ensam.fr

  5. Analytical  Finite volumes  STAR-CCM+ Wall Poiseuille flow → Analytical solution Inlet Outlet → STAR-CCM+ simulation 0.5 cm → Why is there a difference? Pressure Stagnation Oil film in a bearing 50 cm outlet inlet 0 Pa 10 Pa  STAR-CCM+ version: 7.02.011 and 8.02.011  Meshing models: « Surface Remesher », « Polyhedral Mesher » and « Prism Layer Mesher »  Physics models: Steady, Liquid , Segregated Flow, Constant Density, Laminar 5 / 21 michael.heyer@metz.ensam.fr

  6. Analytical  Finite volumes  STAR-CCM+ Poiseuille flow → Analytical solution → STAR-CCM+ simulation → Why is there a difference? Oil film in a bearing r [cm] Analytical velocity [m/s] STAR-CCM+ velocity [m/s] 0.056 0 0.141 0.055 0.125 0.132 0.25 0.105 0.052 0.375 0.062 0.044 0.5 0 -0.006 6 / 21 michael.heyer@metz.ensam.fr

  7. Analytical  Finite volumes  STAR-CCM+ Poiseuille flow → Analytical solution  Is it a problem of the Meshing model? → STAR-CCM+ simulation  « Trimmer » → Why is there a difference?  « Polyhedral Mesher » and « Extruder » Oil film in a bearing r [cm] Analytical velocity STAR-CCM+ STAR-CCM+ STAR-CCM+ [m/s] Polyhedral Trimmer Polyhedral Mesher + Prism [m/s] Mesher Layer Mesher + Extruder [m/s] [m/s] 0 0.141 0.056 0.095 0.1 7 / 21 michael.heyer@metz.ensam.fr

  8. Analytical  Finite volumes  STAR-CCM+ Static pressure Poiseuille flow → Analytical solution Static pressure [Pa] → STAR-CCM+ simulation → Why is there a difference? Oil film in a bearing Length [m] Why is the static pressure at the inlet 8.4 Pa and not 10 Pa ? The boundary condition « Stagnation inlet » imposes a total pressure of 10 Pa and not a static pressure of 10 Pa at the inlet (Remember: p total = p static + p dynamic ) But the fluid is moving at the inlet (0 m/s at the wall ; 0.55 m/s at the central Velocity [m/s] axis), so the static pressure is lower then 10 Pa : 0.1 Outlet 𝒒 𝒕𝒖𝒃𝒖𝒋𝒅 = 𝒒 𝒖𝒑𝒖𝒃𝒎 − 𝝇 𝐰 𝟑 𝟑 = 𝟗. 𝟓 𝑸𝒃 Inlet and we use the static pressure in the Poiseuille équation. 8 / 21 michael.heyer@metz.ensam.fr

  9. Analytical  Finite volumes  STAR-CCM+ Static pressure Poiseuille flow → Analytical solution Static pressure [Pa] → STAR-CCM+ simulation → Why is there a difference? Oil film in a bearing Length [m]  2 Pa/0.1 m 2.5 Pa/0.1 m But the static inlet pressure of 8.4 Pa does not explain all the difference between the analytical solution and the STAR-CCM+ simulation! STAR-CCM+ transforms in the first part of the tube the inlet boundary condition p total = 10 Pa = constant over the inlet section into p static = constant over the section (with a parabolic velocity profile) 9 / 21 michael.heyer@metz.ensam.fr

  10. Analytical  Finite volumes  STAR-CCM+ Static pressure Poiseuille flow → Analytical solution Static pressure [Pa] → STAR-CCM+ simulation → Why is there a difference? Oil film in a bearing Length [m] 1.45 Pa/0.1 m Is there now comformity between the STAR-CCM+ velocity and the analytical velocity calculated with the Poiseuille equation? r [cm] STAR-CCM+ Analytical velocity 𝐰 𝒜 𝒔 = ∆𝒒 𝟓 𝑴 𝝂 𝑺 𝟑 − 𝒔 𝟑 Polyhedral Mesher [m/s] + Extruder [m/s] 0 0.1 0.1025 10 / 21 michael.heyer@metz.ensam.fr

  11. Analytical  Finite volumes  STAR-CCM+ Static pressure Poiseuille flow → Analytical solution Static pressure [Pa] → STAR-CCM+ simulation → Why is there a difference? Oil film in a bearing Length [m] Conclusions:  It is difficult to impose a static pressure drop with STAR-CCM+.  We recommand to foresee a run-in length and to calculate the velocity/pressure dependance only in the part where the pressure gradient is constant.  Meshing models have a big influence on the results. 11 / 21 michael.heyer@metz.ensam.fr

  12. Analytical  Finite volumes  STAR-CCM+ Poiseuille flow Oil film in a bearing → Analytical solution → Numerical solution → STAR-CCM+ simulation  Plain cylindrical journal bearing  Simplified study of the bearing Hub Lubricating oil film Film lubrifiant Coussinet Bush  shaft = 50 ° C  arbre = 50 °C Shaft Arbre v y x 0,3 mm x  bush = 30 ° C  coussinet = 47 °C 12 / 21 michael.heyer@metz.ensam.fr

  13. Analytical  Finite volumes  STAR-CCM+ Poiseuille flow  shaft = 50 ° C v x y Oil film in a bearing Shaft Arbre → Analytical solution → Numerical solution Film Lubricating → STAR-CCM+ simulation oil film lubrifiant  Principle of mass conservation: x Coussinet Bearing bush   v v   y  v y = 0 in every point  bush = 30 ° C x 0   x y  Equation of momentum conservation:    2 v v v     v x = a  y + b x x x v v x  y   2 x y y v x : : fluid velocity in the x axis direction [m/s]  Equation of energy conservation:  : : kinematical viscosity [m 2 /s] 2          a: : thermal diffusivity [m 2 /s]  2 vx   = c  y 2 + d  y + e      a : temperature [ ° C ]   v v    x y  2   y x y y c c p : : specific heat [ J/(kg K) ] p 13 / 21 michael.heyer@metz.ensam.fr

  14. Analytical  Finite volumes  STAR-CCM+ Poiseuille flow  v x = a  y + b  shaft = 50 ° C v x y Oil film in a bearing V x haft = = 2. 2.9321531 m/s /s Shaft x sha Arbre → Analytical solution 4 Node → Numerical solution 3 0.3 mm Film Lubricating → STAR-CCM+ simulation 2 oil film lubrifiant 1 0 x V x ush = 0 0 m/s /s x bus Coussinet 1 Bearing bush v x   Velocity equation: 9773 , 844 s * y  bush = 30 ° C Shaft 4 Node v x ( Node 3 ) = 2.199115 m/s 3 v x ( Node 2 ) = 1.466077 m/s Noeud 2 v x ( Node 1 ) = 0.7330383 m/s 1 0 0 1 2 3 Bearing bush v x [m/s] 14 / 21 michael.heyer@metz.ensam.fr

  15. Analytical  Finite volumes  STAR-CCM+ Poiseuille flow   = c  y 2 + d  y + e v x y Oil film in a bearing  shaft = 50 ° C Shaft Arbre → Analytical solution 4 Node 2 → Numerical solution 3 𝜉 𝜖v x 0.3 mm 𝐝 = − Film Lubricating → STAR-CCM+ simulation 2 2 𝑏  𝑑 𝑞 𝜖𝑧 oil film lubrifiant 1 0 x  bush = 30 ° C Coussinet Bearing bush K K        Temperature equation: 2 6 263 , 196 * * 145625 , 5 * y 30 C y 10 2 m m Shaft 4  ( Node 3 ) = 49,44143 ° C Node 3 Noeud  ( Node 2 ) = 45,92191 ° C 2  ( Node 1 ) = 39,44144 ° C 1 0 25 35 45  [ ° C] Bearing bush 15 / 21 michael.heyer@metz.ensam.fr

  16. Analytical  Finite volumes  STAR-CCM+  Equation of momentum conservation: Poiseuille flow  shaft = 50 ° C Oil film in a bearing v x    2 y → Analytical solution v v v    x x x Shaft Arbre v v 4 x  y  → Numerical solution  2 x y y Node 3 → STAR-CCM+ simulation 0.3 mm Film Lubricating 2 oil film lubrifiant 1 u y (t+1) = u y (t) +  D t 2 u y+1 (t) - 2 u y (t) + u y-1 (t) 0 x D y Coussinet Bearing bush  bush = 30 ° C Node y Analytical velocity [m/s] Finite volume velocity [m/s] 4 2.932153 2.932153 3 2.1991148 2.1991147 2 1.4660765 1.4660765 1 0.7330382 0.7330382 0 0 0 16 / 21 michael.heyer@metz.ensam.fr

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend