a cut free proof system for pseudo transitive modal logics
play

A cut-free proof system for pseudo-transitive modal logics Sonia - PowerPoint PPT Presentation

A cut-free proof system for pseudo-transitive modal logics Sonia Marin With Lutz Straburger Inria, LIX, Ecole Polytechnique Topology, Algebra, and Categories in Logic June 22, 2015 S.Marin, L.Straburger (Inria) Pseudo-transitive


  1. A cut-free proof system for pseudo-transitive modal logics Sonia Marin With Lutz Straßburger Inria, LIX, ´ Ecole Polytechnique Topology, Algebra, and Categories in Logic June 22, 2015 S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 1 / 10

  2. Classical modal logic • Formulas: A , B , ... ::= p | ¯ p | A ∧ B | A ∨ B | � A | ♦ A • Negation is defined via De Morgan duality and A → B ≡ ¯ A ∨ B S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 2 / 10

  3. Classical modal logic • Formulas: A , B , ... ::= p | ¯ p | A ∧ B | A ∨ B | � A | ♦ A • Negation is defined via De Morgan duality and A → B ≡ ¯ A ∨ B • Axioms for K: classical propositional logic and k: � ( A → B ) → ( � A → � B ) A A → B A • Rules: modus ponens: necessitation: − − − − − − − − − − − − − − − B � A S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 2 / 10

  4. Classical modal logic • Formulas: A , B , ... ::= p | ¯ p | A ∧ B | A ∨ B | � A | ♦ A • Negation is defined via De Morgan duality and A → B ≡ ¯ A ∨ B • Axioms for K: classical propositional logic and k: � ( A → B ) → ( � A → � B ) A A → B A • Rules: modus ponens: necessitation: − − − − − − − − − − − − − − − B � A • Theorem: The logic K is sound and complete wrt Kripke frames � W , R � . • W a non-empty set of worlds • R ⊆ W × W the accessibility relation S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 2 / 10

  5. A fine selection of modal axioms t: � A → A reflexivity ∀ w . wRw 4: � A → �� A transitivity ∀ xyw . xRy ∧ yRw → xRw 4 ∗ : �� A → ��� A pseudo-transitivity ∀ xyzw . xRy ∧ yRz ∧ zRw → ∃ u . xRu ∧ uRw S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 3 / 10

  6. A fine selection of modal axioms t: � A → A reflexivity ∀ w . wRw 4: � A → �� A transitivity ∀ xyw . xRy ∧ yRw → xRw 4 ∗ : �� A → ��� A pseudo-transitivity ∀ xyzw . xRy ∧ yRz ∧ zRw → ∃ u . xRu ∧ uRw 4 n m : � n A → � m A (m,n)-transitivity ∀ xw . xR m w → xR n w S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 3 / 10

  7. Pure nested sequents Sequent: Γ ::= A 1 , . . . , A m • • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  8. Pure nested sequents • Nested Sequent: Γ ::= A 1 , . . . , A m , [Γ 1 ] , . . . , [Γ n ] • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m ∨ � fm (Γ 1 ) ∨ . . . ∨ � fm (Γ n ) [Kashima, 1994], [Br¨ unnler, 2009], [Poggiolesi, 2009] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  9. Pure nested sequents • Nested Sequent: Γ ::= A 1 , . . . , A m , [Γ 1 ] , . . . , [Γ n ] • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m ∨ � fm (Γ 1 ) ∨ . . . ∨ � fm (Γ n ) • Sequent context: Γ { }{ }{ } = A , [ { } ] , [ B , { } , [ { } ]] [Kashima, 1994], [Br¨ unnler, 2009], [Poggiolesi, 2009] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  10. Pure nested sequents • Nested Sequent: Γ ::= A 1 , . . . , A m , [Γ 1 ] , . . . , [Γ n ] • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m ∨ � fm (Γ 1 ) ∨ . . . ∨ � fm (Γ n ) • Sequent context: Γ { C }{ }{ } = A , [ C ] , [ B , { } , [ { } ]] [Kashima, 1994], [Br¨ unnler, 2009], [Poggiolesi, 2009] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  11. Pure nested sequents • Nested Sequent: Γ ::= A 1 , . . . , A m , [Γ 1 ] , . . . , [Γ n ] • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m ∨ � fm (Γ 1 ) ∨ . . . ∨ � fm (Γ n ) • Sequent context: Γ { C }{ [ D ] }{ } = A , [ C ] , [ B , [ D ] , [ { } ]] [Kashima, 1994], [Br¨ unnler, 2009], [Poggiolesi, 2009] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  12. Pure nested sequents • Nested Sequent: Γ ::= A 1 , . . . , A m , [Γ 1 ] , . . . , [Γ n ] • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m ∨ � fm (Γ 1 ) ∨ . . . ∨ � fm (Γ n ) • Sequent context: Γ { C }{ [ D ] }{ A , [ C ] } = A , [ C ] , [ B , [ D ] , [ A , [ C ]]] [Kashima, 1994], [Br¨ unnler, 2009], [Poggiolesi, 2009] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  13. Pure nested sequents • Nested Sequent: Γ ::= A 1 , . . . , A m , [Γ 1 ] , . . . , [Γ n ] • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m ∨ � fm (Γ 1 ) ∨ . . . ∨ � fm (Γ n ) • Sequent context: Γ { }{ }{ } = A , [ { } ] , [ B , { } , [ { } ]] • System KN: Γ { A , B } Γ { A } Γ { B } Γ { [ A ] } Γ { ♦ A , [ A , ∆] } id − ∨ − ∧ − � − ♦ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Γ { a , ¯ a } Γ { A ∨ B } Γ { A ∧ B } Γ { � A } Γ { ♦ A , [∆] } [Kashima, 1994], [Br¨ unnler, 2009], [Poggiolesi, 2009] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  14. Pure nested sequents • Nested Sequent: Γ ::= A 1 , . . . , A m , [Γ 1 ] , . . . , [Γ n ] • Corresponding formula: fm (Γ) = A 1 ∨ . . . ∨ A m ∨ � fm (Γ 1 ) ∨ . . . ∨ � fm (Γ n ) • Sequent context: Γ { }{ }{ } = A , [ { } ] , [ B , { } , [ { } ]] • System KN: Γ { A , B } Γ { A } Γ { B } Γ { [ A ] } Γ { ♦ A , [ A , ∆] } id − ∨ − ∧ − � − ♦ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Γ { a , ¯ a } Γ { A ∨ B } Γ { A ∧ B } Γ { � A } Γ { ♦ A , [∆] } • Theorem: System KN is sound and complete for the logic K . [Kashima, 1994], [Br¨ unnler, 2009], [Poggiolesi, 2009] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 4 / 10

  15. Indexed nested sequents w 1 Γ 1 ] , . . . , [ w n Γ n ] • Indexed Sequent: Γ ::= A 1 , . . . , A m , [ • No corresponding formula in the general case 2 { } 1 { } 2 { } = A , [ 2 { } ] , [ 1 B , { } , [ 2 { } ]] • Indexed context: Γ • System iKN: v A ] } u A , ∆] } Γ { A , B } Γ { A } Γ { B } Γ { ♦ A , [ Γ { [ ∨ − ∧ − id − � − ♦ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − u ∆] } Γ { a , ¯ a } Γ { A ∨ B } Γ { A ∧ B } Γ { � A } Γ { ♦ A , [ [Fitting, 2015] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 5 / 10

  16. Indexed nested sequents w 1 Γ 1 ] , . . . , [ w n Γ n ] • Indexed Sequent: Γ ::= A 1 , . . . , A m , [ • No corresponding formula in the general case 2 { C } 1 { } 2 { } = A , [ 2 C ] , [ 1 B , { } , [ 2 { } ]] • Indexed context: Γ • System iKN: v A ] } u A , ∆] } Γ { A , B } Γ { A } Γ { B } Γ { ♦ A , [ Γ { [ ∨ − ∧ − id − � − ♦ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − u ∆] } Γ { a , ¯ a } Γ { A ∨ B } Γ { A ∧ B } Γ { � A } Γ { ♦ A , [ [Fitting, 2015] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 5 / 10

  17. Indexed nested sequents w 1 Γ 1 ] , . . . , [ w n Γ n ] • Indexed Sequent: Γ ::= A 1 , . . . , A m , [ • No corresponding formula in the general case 2 { C } 1 { [ 3 D ] } 2 { } = A , [ 2 C ] , [ 1 B , [ 3 D ] , [ 2 { } ]] • Indexed context: Γ • System iKN: v A ] } u A , ∆] } Γ { A , B } Γ { A } Γ { B } Γ { ♦ A , [ Γ { [ ∨ − ∧ − id − � − ♦ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − u ∆] } Γ { a , ¯ a } Γ { A ∨ B } Γ { A ∧ B } Γ { � A } Γ { ♦ A , [ [Fitting, 2015] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 5 / 10

  18. Indexed nested sequents w 1 Γ 1 ] , . . . , [ w n Γ n ] • Indexed Sequent: Γ ::= A 1 , . . . , A m , [ • No corresponding formula in the general case 2 { C } 1 { [ 3 D ] } 2 { A , [ 4 C ] } = A , [ 2 C ] , [ 1 B , [ 3 D ] , [ 2 A , [ 4 C ]]] • Indexed context: Γ • System iKN: v A ] } u A , ∆] } Γ { A , B } Γ { A } Γ { B } Γ { ♦ A , [ Γ { [ ∨ − ∧ − id − � − ♦ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − u ∆] } Γ { a , ¯ a } Γ { A ∨ B } Γ { A ∧ B } Γ { � A } Γ { ♦ A , [ [Fitting, 2015] S.Marin, L.Straßburger (Inria) Pseudo-transitive modal logics 5 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend