a convex relaxation framework for strategic bidding in
play

A Convex Relaxation Framework for Strategic Bidding in Electricity - PowerPoint PPT Presentation

A Convex Relaxation Framework for Strategic Bidding in Electricity Markets Mahdi Ghamkhari Department of Computer Science University of California Davis Outline M. Ghamkhari, A. Sadeghi-Mobarakeh, H. Mohsenian-Rad, Strategic Bidding for


  1. A Convex Relaxation Framework for Strategic Bidding in Electricity Markets Mahdi Ghamkhari Department of Computer Science University of California Davis

  2. Outline M. Ghamkhari, A. Sadeghi-Mobarakeh, H. Mohsenian-Rad, “Strategic Bidding for Producers in Nodal Electricity Markets: A Convex Relaxation Approach,” Accepted for Publication in IEEE Transactions on Power Systems , July 2016 Joint work with Ashkan Sadeghi-Mobarakeh and Hamed Mohsenian-Rad

  3. History

  4. History

  5. Electricity Market 29 27 G Generators Consumers 30 G 28 25 26 S3 S4 G 24 23 19 18 15 20 G 21 17 S2 14 (Price, Quantity) 16 10 G 22 13 12 11 9 3 6 8 4 1 2 5 G G 7 S1 G Electricity Network constitutes of Generators, Consumers and Transmission Lines Strategic Generator seeks to maximizes its profit by bidding in a strategic way

  6. MPEC T T f x Maximize x F x + 2 M athematical P rogram with E quilibrium C onstraints ( MPEC ) T p ≥ 0 ∀ p x + i i 0 i T v = 0 ∀ v x + m m 0 m T T x Q x + 2 q x = 0 ∀ z z z T q Q = d Will be z needed later z z Inherent relation between parameters

  7. Mixed Integer Linear Program T T f x Maximize x F x + 2 T Binary Variable p ≥ 0 ∀ p x + i i 0 i T v = 0 ∀ v x + m m 0 m T T q x ≤ Binary × ( L arg eNumber ) ⇔ 0 ≤ T x Q x + 2 q x = 0 ∀ z z z z d x + 2 ≤ 1 − Binary × ( L arg eNumber ) T 0 ≤ z T q Q = d Binary Variable z z z

  8. Solutions • MILP: gives global solution • MILP: Computation time increases Exponentially

  9. Solutions • MILP: gives global solution • Our Approach: gives global solution with 99% Optimality • MILP: Computation time increases Exponentially • Our Approach:Computation Time increases Linearly

  10. Our Approach Upper Bound Minimize Λ T T f x Maximize x F x + 2 T p ≥ 0 ∀ p x + i i 0 i T v = 0 ∀ v x + m m 0 m T T x Q x + 2 q x = 0 ∀ z z z

  11. Our Approach Upper Bound Minimize Λ T T f x Maximize x F x + 2 T p ≥ 0 ∀ p x + i i 0 i T v = 0 ∀ v x + m m 0 m T T x Q x + 2 q x = 0 ∀ z z z Λ is upper bound if and only if ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

  12. Positivestellensatz Polynomials that are positive on semi Algebraic sets ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z Polynomial Semi Algebraic Set

  13. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z Polynomial Semi Algebraic Set

  14. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

  15. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

  16. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

  17. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

  18. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

  19. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

  20. Schmudgen Positivestellensatz T T f x − Λ− x F x − 2 I SOS T ∑ p x + p ) − ( ) ( Polynomial i i 0 i = 1 I I SOS T T ∑ ∑ p x + p )( p x + p ) − ( Polynomial ) ( i i 0 j j 0 i = 1 j = 1 I I I SOS T T T ∑ ∑ ∑ ( p x + p )( p x + p )( p x + p ) − Polynomial ) ( Variables are polynomials i i 0 i i 0 t t 0 i = 1 j = 1 t ! M Arbitray ∑ T v x + v ) − ( ) ( Polynomial m m 0 m = 1 Z Arbitrary T 2 q x ) ≥ 0 ∀ x ∈ ∑ T n x Q x + ( ) ( " Polynomial z z z = 1 ⎧ ⎫ T p ≥ 0 ∀ p x + ⎪ ⎪ i i 0 i ⎪ ⎪ ⎪ ⎪ T T T f x ≥ 0 Λ− x F x − 2 v = 0 ∀ v x + is positive on ⎨ ⎬ m m 0 m ⎪ ⎪ T ⎪ T ⎪ x Q x + 2 q x = 0 ∀ ⎪ ⎪ ⎩ ⎭ z z z

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend